Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1998 Printed in Austria

Synthetic Transformation of Abietic Acid II^a. Oxidation of Diene Adducts

Dieter Hofner¹ and **Ernst Haslinger**^{2,*}

¹ CU Chemie Vetikon GmbH, D-77933 Lahr, Germany

² Institute of Pharmaceutical Chemistry, University of Graz, A-8010 Graz, Austria

Summary. The diene adduct of 2-chloroacrylonitrile and abietic acid (1) can be converted to tetracyclic ketone **2**. Oxidation of **1** and **2** with ozone, $KMnO_4$, OsO_4 , and *tert*-butylchromate are described. Three products have been further oxidized by *Baeyer-Villiger* reactions.

Keywords. Abietic acid; Diene adducts; Ozonization; Baeyer-Villiger reaction; Oxidation.

Synthetische Umwandlung des Abietinsäuregerüstes, 2. Mitt. Oxidation von Dien-Addukten

Zusammenfassung. *Diels-Alder*-Addition von 2-Chloracrylnitril an Abietinsäure führt zum entsprechendem Chlornitril 1, das in weiterer Folge in das tetracyclische Keton 2 umgewandelt werden kann. Es werden Oxidationen von 1 und 2 mit Ozon, $KMnO_4$, OsO_4 und *tert*-Butylchromat sowie *Baeyer-Villiger*-Oxidationen von drei Reaktionsprodukten beschrieben.

Introduction

Abietic acid is a cheap and easily available enantiomerically pure starting material which can be used for stereoselective syntheses of terpene derivatives. We have studied synthetic transformations of its carbon skeleton. In a previous communication on *Diels-Alder* addition of 2-chloroacrylonitrile to abietic acid we have described the synthesis of 1 and 2 [1]. This paper reports the results of oxidative transformations of these compounds.

Oxidation with ozone

1 is inert against ozone at -70° C; however, at -30° C to $+10^{\circ}$ C a slow conversion can be observed. At room temperature, adduct **1** is transformed completely and gives alcohol **3** in 56% yield. **3** shows a broad OH-absorption at 2429 cm⁻¹ in the IR spectrum. In the proton NMR spectrum, two singulets instead of dublets for the diastereotopic methyl groups of the isopropyl residue can be detected indicating

^a For part I, see Ref. [1]

^{*} Corresponding author

Scheme 1

oxidation at C-17. The structure of **3** was further confirmed by its mass spectrum which showed the M^+ peak at m/z = 419. A prominent peak at m/z = 332 is the result of a *retro-Diels-Alder* fragmentation $(M - CH_2 = C(CI)CN]^+$. It seems that the double bond is not accessible for ozone due to steric hindrance by the *endo* chlorine substituent. Instead, oxidation of the tertiary carbon of the isopropyl group takes place. Reactions of this type are well known [2–4]; as mechanism, an oxygen insertion into the tertiary CH-bond has been proposed [5, 6].

Reaction of ozone with compound 2 at -70° C in ethyl acetate and subsequent oxidative workup of the crude ozonide and esterification with diazomethane afforded ketodiester 4 (55%). The proton NMR of 4 shows three methyl sigulets at $\delta = 3.68$, 3.61, and 3.60 ppm; their unambiguous assignment was established by a COLOC experiment. The configuration of C-8 was determined by NOE experiments: correlation signals between H-8 and H-6_{ax} and H-8 and the methyl protons at C-19 can be observed. This proves that H-8 occupies the axial position. The signal of H-8 is a triplet of doublets, indicating two large axial-axial couplings (J = 12.0 Hz) which further proves axial arrangement and therefore *R* configuration of C-8. The base peak in the El MS at m/z = 158 is the result of a *McLafferty* rearrangement during which the C-11–C-12 bond is cleaved. No experiments have been carried out to investigate the mechanism of this oxidation.

Reduction of the crude ozonide from ozonolysis of **2** in ethyl acetate with dimethylsulfide [7] in AcOEt gives aldehyde **5** in nearly quantitative yield. The aldehyde proton at C-15 is observed as singulet at $\delta = 9.99$ ppm in the ¹H NMR spectrum and shows NOESY correlations with CH₃-20, H-11_{ax}, H-13_{ax}, H-7_{eq}, and H-6_{ax}, proving axial position of the aldehyde group. Using lithium *tris*-((3-ethyl-3-pentyl)-oxo)-aluminum hydride (*LTEPA*), diketoaldehyde **5** was chemoselectively

reduced, giving diketoalcohol **6** in 91% yield. In the IR spectrum, the broad OHstretching vibration appears at 3450 cm⁻¹. The ¹H NMR spectrum shows an AB system for the diastereotopic protons H-15 (${}^{2}J = 11.3$ Hz) at 4.10 and 3.86 ppm. *Jones* oxidation [8, 9] of **5** yields, after esterification with diazomethane, compound **7** and by-product **8**. The configuration of C-8 in **8** was derived by NMR experiments. The signal of H-9 has two large axial-axial couplings with H-11_{ax} and H-8. H-8 also exhibits NOE correlations to methyl group 19. The intermediate during this oxidation is probably the corresponding β -oxo-carboxylic acid which decarboxylates to **8**. This diketone is further oxidized to **7**. Even the use of smoother oxidation reagents like Ag₂O in EtOH [10–12] or pyridinium chlorochromate in *DMF* [13, 14] gave the overoxidized product **7** as the main component.

Oxidation with OsO4 and KMnO4

1 is inert against OsO_4 and $KMnO_4$ even if used together with dibenzo[18]-crown-6 in benzene [15] or coated silica [16]. **2**, however, can be oxidized in 89% yield by OsO_4 in 'BuOH to *cis*-diol **9**. The ¹³C NMR spectrum shows two signals at $\delta = 73.8$ and 72.0 ppm for the oxygen bearing carbons and no residual resonances due to olefinic carbons. NOESY correlations between H-14 and H-6_{ax}, H-7_{eq}, CH₃-18, CH₃-19, and CH₃-20 prove that the hydroxy groups are in *endo* position relative to the carbonyl group and that the reagent has approached the molecule form the less hindered side.

Oxidation with tert-butylchromate

A well known reagent for the oxidation of allylic positions is *tert*-butylchromate [17-21]. Oxidation of **1** with this reagent gave epoxyketone **10** in 74% yield. The

Scheme 2

¹³C NMR spectrum shows a carbonyl resonance at 205.8 ppm and two epoxy carbons at $\delta = 67.7$ and 67.1 ppm. From an NOE experiment in which the resonance of CH₃-20 was irradiated and the intensity of CH₃-19 was enhanced we conclude the configuration of C-13 to be *R*. By-product **11** is obtained in 21% yield. An α , β -unsaturated carbonyl group is indicated in the IR spectrum by a peak at 1674 cm⁻¹, and the proton NMR spectrum shows no isopropyl methyl resonances. The MS gives a molecular mass of 403 and shows a peak at m/z = 316 which is the result of a *retro-Diels-Alder* fragmentation. The ¹³C carbonyl resonance has long range correlations to the olefinic proton and to CH₃-18.

Oxidation of **2** with *tert*-butylchromate leads to epoxydiketon **12** in 83% yield. The methyl groups attached to the oxiran ring appear at $\delta = 1.49$ and 1.48 ppm in ¹H NMR spectrum. The resonance of CH₃-18 shows NOE correlations to H-12, whereas CH₃-19 is correlated to CH₃-20. From this we determined *R* configuration for C-13. An unambiguous assignment of the ketocarbonyl resonances was obtained from CH-long range correlations: the resonance of C-15 shows small couplings to the protons at C-16.

The keto functions in 10 and 12 can be used for ring opening reaction by *Baeyer-Villiger* oxidation. 10 did not undergo any reaction with *m*-chloroperbenzoic acid (*mCPBA*) [22] even in the presence of trifluoroacetic acid (*TFA*) [23]. Epoxydiketon 12, however, was quantitative and regioselective oxidized to lactone 13.

The position of the lactone bond was determined by a CH-correlation spectrum which was optimized for 7 Hz couplings. The ketocarbonyl C-14 ($\delta = 199.9$ ppm) has correlations to the protons in positions 7 and to H-9; the lacton carbonyl ($\delta = 169.8$ ppm) shows correlations to the protons at C-16. Alkoxy C-8 has cross peaks to the protons in position 9, 7, and 11. Cleavage of the oxiran ring in **10** with

Scheme 3

acid led to compound 14 in 77% yield. The ¹³C NMR spectrum of 14 shows two olefinic carbons ($\delta = 141.4$ and 118.3 ppm). Additional information was obtained by a DEPT experiment which shows that the high field resonance has triplet multiplicity. In a COLOC spectrum, correlations between the hydroxyl bearing C-13 and H-16 α and H-19 were observed. The signals of both olefinic protons overlap in the ¹H NMR spectrum generating a multiplet at $\delta = 5.15$ ppm. Irradiation of this resonance in an NOE difference experiment gave signal enhancements at H-12, H-19, and CH₃-20. This proves that C-18 and C-20 are close in space and therefore C-13 has *R* configuration.

Acidic treatment of **12** under the same conditions led to a complex mixture of products.

Ozonolysis of the double bond of **14** gave the hydroxydiketone **15** in moderate yield (45%). *R* configuration of C-13 in this compound is proven by a NOESY correlation between 13-OH and H-16 β .

Baeyer-Villiger oxidation of 7 and 8

Bis-(trimethylsilyl)-peroxide oxidizes selectively carbonyl groups in the presence of olefinic double bonds [24–26]. Oxidation of 7 with this reagent in the presence of trimethylsilyltrifluoromethane sulfonate gave the tetracyclic peroxide 17 in 77% yield. The carbon resonances of C-8 and C-15 are in the characteristic region for acetals. From COLOC-correlations with H-11 β , H-12, both H-13, and the isopropyl protons the resonance at $\delta = 111.0$ ppm was assigned to C-15. The resonance at $\delta = 109.4$ ppm gives correlations with H-9, H-11 β , and both protons in position 7 and therefore corresponds to C-8. The ¹H NMR resonances of H-11 β and CH₃-19 are both shifted to higher frequency indicating a β -peroxo bridge. From *Dreiding* models one can see that only in this case both groups can be influenced by the deshielding effect of a close C-O bond. Analogous peroxides have been obtained before in low yield from cyclohexanone derivatives and hydrogen peroxide [27–32]. In an attempt to optimize the conditions of the reaction of 7 with *bis*-(trimethylsilyl)-peroxide we have used twice the amount of trimethylsilyltrifluoromethane sulfonate. In this case, 18 was obtained in 61%yield. Its structure was derived from COSY, COLOC, and NOESY experiments: C,H-(7 Hz) correlations were observed between C-13 and H-11_{eq}, H-12, H-15, and the protons of the methyl groups attached to C-14 and between C-14 and the olefinic H-7. The position of the double bond was derived from COSY cross peaks connecting H-7 to H-9 and the protons at position 6 as well as the homoallyl connectivity between H-9 and the protons at C-6. The ¹H resonance of H-11_{ax} is a pseudo-quartet showing three large couplings. This indicates that the proton at C-12 is in α -position and the configuration of C-12 has been inverted during the reaction. In a NOESY experiment one can find a correlation between H-9 and H-12. This proves that both protons are on the same side of the ring system and therefore the configuration of C-12 is S.

Reaction of **8** with *bis*-(trimethylsilyl)-peroxide and a catalytic amount of trimethylsilyltrifluoromethane sulfonate gave dimer **16** in quantitative yield. From FD-MS, a molecular weight of 756 was derived; in the ¹³C NMR spectrum, however, only 22 carbon resonances were observed, indicating that the molecule

has a C₂-axis; consequently, no optical activity was observed. The signal of C-14 is shifted in the acetal region to $\delta = 109.6$ ppm [33]. The proton resonance of H-13_{eq} appears at unusual high frequency ($\delta = 3.61$ ppm), showing that it is close to the 1,2,4,5-tetroxan ring system.

Experimental

General

Preparative thin layer chromatography: Chromatotron 8924 Harrison Research, 1 mm Kieselgel 60 PF₂₅₄ (Merck) with gypsum; column chromatography (CC): Kieselgel 60 (Merck) (70–230 mesh), pore-diameter 60 Å; thin-layer chromatography (TLC): TLC sheets, ALUGRAM[®]; SIL G/UV₂₅₄ (Machery-Nagel) and TLC sheets, POLYGRAM[®], SIL G/UV₂₅₄ (Machery-Nagel); solvents frequently used: cyclohexane (CH) and AcOEt; the substances were detected in UV light at 254 nm and by spraying with molybdatophoshoric acid or methanol/sulfuric acid (9:1) and subsequent heating with a hot gun. Melting points: melting point apparatus SM-LUX (Leitz), uncorrected; optical rotation: polarimeter 241 MC (Perkin Elmer); IR spectra; Spectrometer 883 (PERKIN-ELMER); UV/Vis: Lambda 17 UV/Vis-spectrometer (Perkin Elmer); NMR spectra: Bruker AC 200 and AMX 500 (300 K), 5 mm tubes, solvent resonance as internal standard. Before NOE experiments were performed, dissolved oxygen was removed by bubbling Ar through the solutions. ¹H and ¹³C resonances were assigned using ¹H, ¹H and ¹H, ¹³C correlation spectra (sometimes optimized for small CH-couplings) and are numbered as given in the formulas. MS: Varian MAT 711 spectrometer; 70 eV electron impact and field desorption. Elementary analyses: Laboratory for Microanalysis, Institute of Physical Chemistry of the University of Vienna and Sektion Analytik, University of Ulm. Ozone generator: GSG 010.2 SORBIOS (0.4 bar, 100 V, 30 l/h).

Methyl-(4α , 15 β)-15-chloro-15-cyano-13-(1-methylethyl)-17,19-dinoratis-13-en-4-carboxylate (1) and Methyl-(4α)-13-(1-methylethyl)-15-oxo-17,19-dinoratis-13-en-4-carboxylate (2) were prepared according to Ref. [1].

Methyl-(4α , 15 β)-15-chloro-15-cyano-13-(1-hydroxy-1-methylethyl)-17,19-dinoratis-13-en-4-carboxylate (**3**)

A solution of 400 mg (1 mmol) **1** in 40 ml abs. AcOEt was treated with ozone at room temperature. Excess of ozone was removed by bubbling oxygen through the mixture. After evaporation of the solvent, the residue was purified by CC over silica (CH/AcOEt = 2:1).

Yield: 235 mg **3** (56%); white crystals; m.p.: 77°C; $R_{\rm f} = 0.31$ (CH/AcOEt = 2:1); $[\alpha]_{\rm D}^{20} = +20.6$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 3479$ (s), 2934 (s), 2237 (w), 1727 (vs), 1446 (m), 1259 (s), 732 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 203 (3.854) nm; ¹H NMR (CDCl₃): $\delta = 0.59$ (s, 3H, 20-H), 1.02 (m, 1H, 1-H_{ax}), 1.10 (s, 3H, 21-H), 1.15 (m, 1H, 11-H β), 1.18 (m, 1H, 6-H_{eq}), 1.30 (s_{br}, 6H, 18-H and 19-H), 1.3–1.5 (m, 2H, 2-H), 1.37 (m, 1H, 1-H_{eq}), 1.45 (m, 1H, 3-H_{eq}), 1.47 (m, 1H, 6-H_{ax}), 1.62 (m, 1H, 11-H α), 1.72 (m, 1H, 3-H_{ax}), 1.72 (m, 1H, 5-H), 1.74 (m, 1H, 7-H_{ax}), 1.78 (m, 1H, 9-H), 2.01 (dt, J = 14.7 Hz, J = 3.2 Hz, $J_{11\beta,16\beta} = 3.2$ Hz, 1H, 16-H β), 2.27 (m, 1H, 7-H_{eq}), 2.60 (dd, J = 14.7 Hz, J = 2.2 Hz, 1H, 16-H α), 2.82 (s_{br}, 1H, 12-H), 3.65 (s, 3H, 24-H), 5.56 (s_{br}, 1H, 14-H) pm; ¹³C NMR (CDCl₃): $\delta = 16.0$ (q, C-20), 16.8 (q, C-21), 17.0 (t, C-2), 21.4 (t, C-6), 27.2 (t, C-11), 27.7 (q, C-18/C-19), 27.9 (q, C-19/C-18), 30.7 (d, C-12), 32.5 (t, C-7), 36.3 (t, C-3), 37.1 (t, C-1), 37.9 (s, C-10), 46.2 (s, C-8), 47.0 (s, C-4), 47.5 (t, C-16), 48.7 (d, C-5), 49.6 (d, C-9), 52.0 (q, C-24), 64.9 (s, C-15), 71.9 (s, C-17), 120.2 (s, C-23), 121.9 (d, C-14), 149.6 (s, C-13), 178.8 (s, C-22) pm; MS (70 eV): m/z (%) = 421 (7) [(M+2)⁺], 419 (18) [M⁺], 332 (91), 254 (100), 132 (41), 121 (52), 59 (48); C₂₄H₃₄CINO₃ (420.0); calc.: C 68.64, H 8.16, N 3.33; found: C 68.56, H 8.23, N 3.29.

$Dimethyl-(1R-(1\alpha,4a\alpha,5\beta(2R^*),6\alpha,8a\alpha))-5-(3-methoxycarbonyl-2-(2-methyl-1-oxoethyl)-propyl)-1,4a-dimethyl-perhydro-1,6-naphthalene-dicarboxylate (4)$

Ozone was bubbled through a solution of 250 mg (0.7 mmol) **2** in 30 ml dry AcOEt at -70° C until the blue colour became persistent. After removing the excess of ozone by blowing oxygen through the mixture at -70° C it was allowed to reach room temperature, and the solvent was evaporated. The residue was dissolved in 1 ml MeOH, 2 ml HCOOH (98%), and 0.5 ml H₂O₂ (30%) and heated under reflux for 2 h. After cooling, ice water was added, and the product was extracted three times with Et₂O. The organic phases were washed twice with 1% aqueous Kl, with 10% Na₂S₂O₃ solution, with 5% NaOH, and with H₂O, and dried over Na₂SO₄. After evaporation the residue was purified by CC over silica (CH/AcOEt = 5:1).

Yield: 174 mg 4 (55%); colourless oil; $R_f = 0.32$ (CH/AcOEt = 5:1), 0.57 (CH/AcOEt = 1:1); $[\alpha]_{D}^{20} = +44.6$ (c = 0.1, CHCl₃); IR (neat): $\nu = 2949$ (s), 1731 (vs), 1436 (m), 1250 (s), 1168 (m) cm⁻¹; UV (MeOH): λ_{max} (lg ε) = 203 (3.326) nm; ¹H NMR (CDCl₃): δ = 0.81 (s, 3H, 19-H), 0.85 $(ddd, J = 14.8 Hz, J = 6.2 Hz, J = 5.7 Hz, 1H, 11-H), 0.94 (m, 1H, 1-H_{ax}), 1.08 (d, J = 6.9 Hz, 3H, 1.08 Hz, 1.08 H$ 17-H/18-H), 1.09 (d, J = 6.9 Hz, 3H, 18-H/17-H), 1.12 (s, 3H, 20-H), 1.25 (ddd, J = 11.4 Hz, 3-H_{eq}), 1.5–1.8 (m, 2H, 2-H), 1.57 (m, 1H, 7-H_{ax}), 1.67 (m, 1H, 3-H_{ax}), 1.74 (m, 1H, 1-H_{eq}), 1.75 (m, 1H, 5-H), 1.78 (m, 1H, 11-H), 1.80 (m, 1H, 7-H_{eq}), 2.29 (td, $2 \times J = 12.0$ Hz, J = 4.1 Hz, 1H, 8-H), 2.32 (dd, J = 16.1 Hz, J = 5.4 Hz, 1H, 13-H), 2.46 (dd, J = 16.1 Hz, J = 8.4 Hz, 1H, 13-H), 2.74 (sept, *J* = 6.9 Hz, 1H, 16-H), 3.00 (m, 1H, 12-H), 3.60 (s, 3H, 25-H), 3.61 (s, 3H, 23-H), 3.68 (s, 3H, 24-H) ppm; ¹³C NMR (CDCl₃): δ = 14.1 (q, C-19), 16.7 (q, C-20), 17.78 (q, C-17/C-18), 17.82 (t, C-2), 18.5 (q, C-18/C-17), 23.3 (t, C-6), 30.3 (t, C-7), 31.4 (t, C-11), 36.5 (t, C-13), 36.8 (t, C-3), 37.8 (s, C-10), 37.9 (t, C-1), 41.0 (d, C-16), 45.5 (d, C-12), 47.2 (d, C-8), 47.5 (s, C-4), 48.9 (d, C-5), 50.0 (d, C-9), 51.5 (q, C-25), 51.6 (q, C-24), 51.9 (q, C-23), 172.5 (s, C-14), 176.4 (s, C-22), 178.8 (s, C-21), 216.2 (s, C-15) ppm; MS (70 eV): m/z (%) = 452 (16) [M⁺], 409 (28), 381 (13), 321 (36), 289 (31), 235 (31), 158 (100), 71 (24), 43 (76); C₂₅H₄₀O₇ (452.6); calc.: C 66.35, H 8.91; found: C 66.26, H 8.97.

Methyl-(1R-(1\alpha,4a\beta,4b\alpha,6\beta,8a\beta,10a\alpha))-8a-formyl-1,4a-dimethyl-6-(2-methyl-1-oxopropyl)-8-oxo-perhydro-1-phenanthrene-carboxylate (5)

Ozone was bubbled through a solution of 2.9 g (8.1 mmol) **2** in 120 ml dry AcOEt at -70° C until the blue colour became persistent. The excess of ozone was removed by oxygen at this temperature, and 10 ml dimethylsulfide were added. This mixture was allowed to reach room temperature and was stirred for 24 h. The residue obtained after evaporation was dissolved in 300 ml Et₂O, washed with brine, and dried over Na₂SO₄. The crude product was obtained after evaporation of the solvent and purified by CC over silica CH/AcOEt (3:1).

Yield: 3.0 g **5** (95%); white crystals (from CH); m.p.: $170-172^{\circ}$ C; $R_{\rm f} = 0.34$ (CH/AcOEt = 3:1), 0.20 (CH/AcOEt = 6:1); $[\alpha]_{20}^{20} = +128.1$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 2948$ (s), 1731 (vs), 1712 (vs), 1697 (vs), 1469 (m), 1446 (m), 1244 (s) cm⁻¹; UV (MeOH) $\lambda_{\rm max}$ (lg ε) = 203 (3.128), 316 (1.968) nm; ¹H NMR (CDCl₃): $\delta = 0.84$ (s, 3H, 20-H), 1.02 (m, 1H, 1-H_{ax}), 1.08 (d, J = 6.9 Hz, 3H, 18-H/19-H), 1.09 (d, J = 6.9 Hz, 3H, 19-H/18-H), 1.11 (s, 3H, 21-H), 1.23 (m, 1H, 6-H_{eq}), 1.46 (m, $3 \times J = 12.4-13.7$ Hz, J = 3.3 Hz, 1H, 6-H_{ax}), 1.5–1.7 (m, 2H, 2-H), 1.54 (m, 1H, 3-H_{eq}), 1.60 (m, 1H, 9-H), 1.61 (m, 1H, 7-H_{ax}), 1.68 (m, 1H, 3-H_{ax}), 1.71 (m, 1H, 1-H_{eq}), 1.72 (m, 1H, 5-H), 1.92 (m, 1H, 11-H_{eq}), 2.15 (q, $3 \times J = 13.2$ Hz, 1H, 11-H_{ax}), 2.37 (dt, J = 14.2 Hz, $2 \times J = 3.2$ Hz, 1H, 7-H_{eq}), 2.45 (ddd, J = 14.1 Hz, J = 13.1 Hz, 1H, 13-H_{ax}), 2.95 (tt, $2 \times J = 12.0-13.0$ Hz, $2 \times J = 4.0-4.2$ Hz, 1H, 12-H), 3.63 (s, 3H, 23-H), 9.99 (s, 1H, 15-H) ppm; ¹³C NMR (CDCl₃): $\delta = 16.3$ (q, C-21), 16.6 (q, C-20), 17.8 (t, C-2), 18.1 (q, C-18/C-19), 18.4 (q, C-19/C-18), 21.0 (t, C-6), 22.5 (t, C-11), 28.9 (t, C-7), 36.6 (t, C-3), 38.1 (t, C-1), 38.5 (s, C-10), 39.4 (d, C-17), 42.1 (t, C-13), 47.4 (s, C-4), 48.2

(d, C-12), 49.6 (d, C-5), 51.9 (q, C-23), 59.9 (d, C-9), 66.7 (s, C-8), 178.5 (s, C-22), 199.5 (d, C-15), 204.1 (s, C-14), 213.2 (s, C-16) ppm; MS (70 eV): m/z (%) = 390 (7) [M⁺], 362 (34), 251 (78), 191 (100), 123 (66), 71 (44), 43 (96); C₂₃H₃₄O₅ (390.5); calc.: C 70.74, H 8.78; found: C 70.65, H 8.76.

Methyl-(1R-(1\alpha,4a\beta,4b\alpha,6\beta,8a\beta,10a\alpha))-8a-hydroxymethyl-1,4a-dimethyl-6-(2-methyl-1-oxopropyl)-8-oxo-perhydro-1-phenanthren-carboxylate (6)

To a solution of 1.0 g (2.6 mmol) **5** in dry *THF* at -70° C under Ar, 5.5 ml (2.7 mmol) of a 0.5 *M* solution of lithium-*tris*-((3-ethyl-3-pentyl)-oxo-)-aluminum hydride in *THF* were added dropwise within 2 h. This mixture was stirred for 4 h at -70° C; then a saturated aqueous solution of K-Na-tartrate was added. After addition of water and CH₂Cl₂ this mixture was continuously extracted for 12 h with CH₂Cl₂. The organic phase was dried over Na₂SO₄ and evaporation yielded the crude product which was recrystallised from CH/AcOEt (6:1).

Yield: 930 mg **6** (91%); white crystals; m.p.: 198–199°C; $R_{\rm f} = 0.33$ (CH₂Cl₂/MeOH = 98:2); $[\alpha]_{D}^{20} = +80.8$ (c = 0.1, CHCl₃); IR (KBr) $\nu = 3450$ (s), 2931 (m), 1726 (vs), 1710 (s), 1697 (vs), 1460 (m), 1251 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 203 (3.276), 284 (2.426) nm; ¹H NMR (CDCl₃): $\delta = 0.80$ (s, 3H, 20-H), 0.92 (m, 1H, 1-H_{ax}), 1.04 (d, J = 6.8 Hz, 3H, 18-H/19-H), 1.05 (d, J = 6.9 Hz, 3H, 19-H/18-H), 1.08 (m, 1H, 6-H_{eq}), 1.09 (s, 3H, 21-H), 1.30 (m, 1H, 9-H), 1.35–1.7 (m, 2H, 2-H), 1.42 (m, 1H, 3-H_{eq}), 1.48 (m, 1H, 6-H_{ax}), 1.55–1.9 (m, 2H, 11-H), 1.58 (m, 1H, 7-H_{ax}), 1.61 (m, 1H, 5-H), 1.64 (m, 1H, 1-H_{eq}), 1.71 (m, 1H, 3-H_{ax}), 1.89 (m, 1H, 7-H_{eq}), 2.26 (m, 1H, 13-H_{eq}), 2.68 (sept, J = 6.8 Hz, 1H, 17-H), 2.74 (m, 1H, 13-H_{ax}), 2.84 (m, 1H, 12-H), 3.59 (s, 3H, 23-H), 3.86 (d, J = 11.3 Hz, 1H, 15-H), 4.10 (d, J = 11.3 Hz, 1H, 15-H) pm; ¹³C NMR (CDCl₃): $\delta = 16.2$ (q, C-21), 16.4 (q, C-20), 17.8 (t, C-2), 18.0 (q, C-18/C-19), 18.2 (q, C-19/C-18), 20.6 (t, C-6), 22.6 (t, C-11), 28.5 (t, C-7), 36.2 (t, C-3), 37.8 (s, C-10), 38.7 (t, C-1), 39.7 (d, C-17), 40.4 (t, C-13), 47.5 (s, C-4), 48.4 (d, C-12), 50.3 (d, C-5), 51.9 (q, C-23), 55.5 (s, C-8), 57.2 (d, C-9), 61.8 (t, C-15), 178.8 (s, C-22), 211.9 (s, C-14), 214.5 (s, C-16) ppm; MS (70 eV): m/z (%) = 392 (7) [M⁺], 362 (30), 319 (14), 303 (22), 181 (51), 121 (82), 71 (61), 43 (100); C₂₃H₃₆O₅ (392.5); calc.: C 70.38, H 9.24; found: C 70.40, H 9.22.

Methyl- $(1R \cdot (1\alpha, 4a\beta, 5\beta(2R^*), 8a\alpha))$ -5-(3-methoxycarbonyl-2-(2-methyl-1-oxoethyl)-propyl)-1,4a-dimethyl-6-oxo-perhydro-1-naphthalene-carboxylate (**7**) and Methyl- $(1R \cdot (1\alpha, 4a\beta, 4b\alpha, 6\beta, 8a\beta, 10a\alpha))$ -1,4a-dimethyl-6-(2-methyl-1-oxopropyl)-8-oxo-perhydro-1-phenanthrene carboxylate (**8**)

To a solution of 3.4 g (8.7 mmol) **5** in 180 ml acetone, 20 ml *Jones* reagent (7 g CrO₃ dissolved in 50 ml H₂O, cooled with ice, 6 ml H₂SO₄ added) were added dropwise during 48 h at RT. The excess of reagent was destroyed with *i*-propanol, the mixture was filtered, and the solvent removed *in vacuo*. To the residue 40 ml 5% NaOH were added, and the mixture was extracted three times with Et₂O. The combined organic phases were washed with brine and dried over Na₂SO₄. Evaporation of the solvent gave the crude product which was purified by CC (silica, CH/AcOEt (4:1)) to afford 690 mg (22%) **8** (white crystals).

The aqueous phase was acidified with $2N H_2SO_4$ and then extracted three times with Et₂O. The combined organic phases were washed with brine, dried over Na₂SO₄, and evaporated. The crude product was purified by CC over silica with CH/AcOEt (3:1) to afford 2.6 g (74%) **7** (colourless oil).

7: $R_{\rm f} = 0.29$ (CH/AcOEt = 3:1); $[\alpha]_{\rm D}^{20} = -29.6$ (c = 0.2, CHCl₃); IR (neat): $\nu = 2949$ (s), 1713 (vs), 1436 (m), 1248 (s), 1169 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 202 (3.428), 274 (2.408) nm; ¹H NMR (CDCl₃): $\delta = 0.64$ (s, 3H, 19-H), 0.97 (s, 3H, 17-H/18-H), 1.03 (s, 3H, 18-H/17-H), 1.22 (td, $2 \times J = 12.7-13.0, J = 4.0$ Hz, 1H, 1-H_{ax}), 1.4–1.6 (m, 2H, 2-H), 1.49 (m, 1H, 11-H), 1.52 (m, 1H, 6-H_{eq}), 1.58 (m, 1H, 3-H_{eq}), 1.63 (m, 1H, 6-H_{ax}), 1.71 (m, 1H, 3-H_{ax}), 1.72 (m, 1H, 1-H_{eq}), 1.85 (ddd, J = 13.6 Hz, J = 10.0 Hz, J = 4.3 Hz, 1H, 11-H), 2.03 (d, J = 9.8 Hz, 1H, 9-H), 2.2–2.3 (m, 2H, 7-H),

Oxidation of Diene Adducts of Abietic Acid

2.25 (m, 1H, 5-H), 2.25 (m, 1H, 13-H), 2.59 (dd, J = 16.0 Hz, J = 8.1 Hz, 1H, 13-H), 2.67 (sept, J = 6.9 Hz, 1H, 16-H), 3.08 (m, 1H, 12-H), 3.59 (s, 3H, 23-H), 3.63 (s, 3H, 22-H) ppm; ¹³C NMR (CDCl₃): $\delta = 14.7$ (q, C-19), 16.5 (q, C-20), 17.7 (t, C-2), 17.9 (q, C-17/C-18), 18.1 (q, C-18/C-17), 23.4 (t, C-11), 25.8 (t, C-6), 36.8 (t, C-13), 36.9 (t, C-3), 37.9 (t, C-1), 40.2 (d, C-16), 41.8 (s, C-10), 41.9 (t, C-7), 44.3 (d, C-12), 47.3 (s, C-4), 48.5 (d, C-5), 51.5 (q, C-23), 52.0 (q, C-22), 61.2 (d, C-9), 172.1 (s, C-14), 178.5 (s, C-21), 210.3 (s, C-8), 216.1 (s, C-15) ppm; MS (FD): m/z (%) = 408 (100) [M⁺]; MS (70 eV): m/z (%) = 408 (31) [M⁺], 365 (39), 337 (8), 317 (62), 305 (76), 223 (62), 158 (68), 121 (84), 71 (48), 43 (100); C₂₃H₃₆O₆ (408.5); calc.: C 67.62, H 8.88; found: C 67.59, H 8.87.

8: M.p.: 113°C; $R_{\rm f} = 0.39$ (CH/AcOEt = 4:1), $[\alpha]_{\rm D}^{20} = +50.5$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 2937$ (s), 1731 (vs), 1707 (vs), 1444 (m), 1244 (s), 1172 (m) cm⁻¹; UV (MeOH): λ_{max} $(\lg \varepsilon) = 217$ (2.477), 295 (1.380) nm; ¹H NMR (C₆D₆): $\delta = 0.58$ (s, 3H, 19-H), 0.65 (td, $2 \times J = 13.3 \text{ Hz}, J = 4.0 \text{ Hz}, 1\text{H}, 1-\text{H}_{ax}$, 0.80 (td, $2 \times J = 12.2 \text{ Hz}, J = 2.9 \text{ Hz}, 1\text{H}, 9-\text{H}$), 0.87 (d, J=6.9 Hz, 3H, 17-H/18-H), 0.91 (d, J=6.9 Hz, 3H, 18-H/17-H), 1.1–1.3 (m, 2H, 6-H), 1.19 (m, 1H, 11-H_{ax}), 1.20 (s, 3H, 20-H), 1.2–1.4 (m, 2H, 2-H), 1.32 (m, 1, 1-H_{eq}), 1.49 (m, 1H, 3-H_{eq}, 1.54 (m, 1H, 7-H_{ax}), 1.58 (m, 1H, 11-H_{eq}), 1.68 (m, 1H, 5-H), 1.70 (m, 1H, 8-H), 1.74 (td, $2 \times J = 13.0$ Hz, J = 4.4 Hz, 1H, 3-H_{ax}), 1.95 (m, 1H, 7-H_{eq}), 2.24 (m, 1H, 16-H), 2.26 (m, 1H, 13-H_{ax}), 2.34 (ddd, $J = 13.4 \text{ Hz}, J = 3.7 \text{ Hz}, J_{11eq,13eq} = 2.0 \text{ Hz}, 1\text{H}, 13\text{-H}_{ax}), 2.42 \text{ (tt, } 2 \times J = 12.5 - 12.6 \text{ Hz}, 2 \times J = 3.4 - 12.5 \text{-Hz}, 3 \times J = 3.4 - 12.5 + 1$ 3.6 Hz, 1H, 12-H), 3.36 (s, 3H, 22-H) ppm; ¹³C NMR (C₆D₆): δ = 13.9 (q, C-19), 17.0 (q, C-20), 18.1 (q, C-17/C-18), 18.29 (q, C-18/C-17), 18.34 (t, C-2), 23.4 (t, C-6), 26.5 (t, C-7), 27.2 (t, C-11), 36.9 (s, C-10), 37.2 (t, C-3), 38.2 (t, C-1), 39.5 (d, C-16), 43.2 (t, C-13), 47.6 (s, C-4), 47.7 (d, C-12), 48.7 (d, C-8), 49.0 (d, C-5), 51.5 (q, C-22), 55.1 (d, C-9), 178.3 (s, C-21), 209.2 (s, C-14), 212.6 (s, C-15) ppm; MS (70 eV): m/z (%) = 362 (50) [M⁺], 319 (41), 303 (48), 291 (22), 259 (46), 231 (36), 181 (54), 123 (70), 71 (60), 43 (100); C₂₂H₃₄O₄ (362.5); calc.: C 72.89, H 9.45; found: C 72.80, H 9.45.

Methyl- $(4\alpha, 13S, 14R)$ -13, 14-*dihydroxy*-13-(1-*methylethyl*)-15-oxo-17, 19-*dinoratisan*-4-*carboxylate* (**9**)

A mixture of 480 mg (4.3 mmol) trimethylamine-N-oxide dihydrate, 0.3 ml pyridine, 2 ml H₂O, 10 ml *tert*-butanol, and 1.0 g (2.8 mmol) **2** under Ar was heated to 100°C. During 4 days, 64 mg (0.25 mmol) OsO₄ dissolved in 3 ml *tert*-butanol were added in small portions. After cooling to RT, 15 ml 20% Na₂S₂O₅ solution were added and the solvent was evaporated. The residue was mixed with H₂O and Et₂O and extracted continuously with Et₂O during 12 h. The organic phase was dried over Na₂SO₄, the solvent evaporated, and the residue crystallized from CH/AcOEt (3:1).

Yield: 945 mg **9** (86%); colourless crystals (CHCl₃); m.p.: 219°C; $R_{\rm f} = 0.15$ (CH/AcOEt = 2:1); $[\alpha]_{\rm D}^{20} = +37.0$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 3515$ (m), 3403 (s), 2950 (s), 1729 (vs), 1712 (vs), 1469 (m), 1246 (s) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 201 (3.119), 265 (1.913) nm; ¹H NMR (CDCl₃): $\delta = 0.94$ (m, 1H, 1-H_{ax}), 0.95 (d, J = 6.8 Hz, 6H, 18-H u. 19-H), 1.03 (s, 3H, 20-H), 1.09 (m, 1H, 6-H_{eq}), 1.16 (s, 3H, 21-H), 1.41 (m, 1H, 6-H_{ax}), 1.45–1.6 (m, 2H, 2-H), 1.49 (m, 1H, 9-H), 1.54 (m, 1H, 3-H_{eq}), 1.56 (m, 1H, 11-H β), 1.58 (m, 1H, 1-H_{eq}), 1.63 (m, 1H, 16-H α), 2.05 (m, 1H, 17-H), 2.42 (s_{br}, 1H, 12-H), 2.51 (d, J = 7.0 Hz, 1H, 14-OH), 2.55 (s_{br}, 1H, 13-OH), 2.73 (ddd, J = 18.6 Hz, J = 3.7 Hz, $J_{11\beta,16\beta} = 2.7$ Hz, 1H, 16-H β), 3.62 (s, 3H, 23-H), 3.97 (d, J = 7.0 Hz, 1H, 14-H) ppm; ¹³C NMR (CDCl₃): $\delta = 16.0$ (q, C-18/C-19), 16.2 (q, C-20), 16.4 (q, C-19/C-18), 16.8 (q, C-21), 17.3 (t, C-2), 20.6 (t, C-6), 21.6 (t, C-11), 24.4 (t, C-7), 33.4 (d, C-17), 34.3 (d, C-12), 36.4 (t, C-3), 37.9 (s, C-10), 38.6 (t, C-16), 38.9 (t, C-1), 47.08 (d, C-9), 47.12 (s, C-4), 49.3 (d, C-5), 52.0 (t, C-23), 52.5 (s, C-8), 72.0 (d, C-14), 73.8 (s, C-13), 178.9 (s, C-22), 214.8 (s, C-15) ppm; MS (FD): m/z (%) = 393 (100) [(M+1)⁺], 374 (51), 331 (95); MS (70 eV): m/z (%) = 374 (1), 349 (4), 331 (100), 181 (21), 121 (42), 43 (22); C₂₃H₃₆O₅ (392.5); calc.: C 70.38, H 9.24; found: C 70.29, H 9.25.

Methyl- $(4\alpha, 8\alpha, 12\alpha, 14R, 16\alpha)$ -14-chloro-14-cyano-16, 17-epoxy-17, 17-dimethyl-15-oxo-19-noratisan-4-carboxylate (**10**) and Methyl- $(4\alpha, 15\beta)$ -13-acetyl-15-chloro-15-cyano-17, 19-dinoratis-13-en-4-carboxylate (**11**)

tert-Butylchromate solution: 6.8 g CrO_3 were dissolved in a mixture of 60 ml dry *THF*, 20 ml *tert*butanol, 10 ml acetic acid, and 3 ml acetic anhydride. 65 ml of this solution and 2.0 g (5.0 mmol) **1** in 40 ml abs. CCl₄ were refluxed under Ar for 24 h. An additional portion of 20 ml *tert*-butylchromate solution was added, and refluxing was continued for 24 h. After cooling to RT, 100 ml ice water and 200 ml CHCl₃ were added, and the aqueous layer was extracted three times with CHCl₃. The combined organic phases were washed with H₂O, 5% NaOH, and H₂O, dried over Na₂SO₄, and evaporated. The components of the crude product were separated by CC over silica with CH/AcOEt (4:1). Yield: 1.6 g (74%) **10** (white crystals) and 420 mg **11** (21%).

10: M.p.: 172–173°C; $R_f = 0.21$ (CH/AcOEt = 4:1), 0.28 (CH/AcOEt = 3:1); $[\alpha]_D^{20} = -82.1$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 2934$ (s), 2237 (w), 1732 (vs), 1447 (m), 1256 (s), 1179 (s) cm⁻¹; UV (MeOH): λ_{max} (lg ε) = 204 (3.763), 316 (1.781) nm; ¹H NMR (CDCl₃): $\delta = 0.60$ (s, 3H, 20-H), 1.05 (m, 1H, 1-H_{ax}), 1.07 (s, 3H, 21-H), 1.15 (m, 1H, 6-H_{eq}), 1.32 (m, 1H, 7-H_{ax}), 1.33 (m, 1H, 6-H_{ax}), 1.40 (s, 3H, 18-H), 1.4–1.6 (m, 2H, 2-H), 1.45 (s, 3H, 19-H), 1.49 (m, 1H, 3-H_{eq}), 1.59 (m, 1H, 1-H_{eq}), 1.73 (m, 1H, 5-H), 1.75 (m, 1H, 3-H_{ax}), 1.75 (m, 1H, 11-H β), 1.95 (td, $2 \times J = 11.0-14.0$ Hz, J = 3.0 Hz, 1H, 11-H α), 2.08 (m, 1H, 12-H), 2.12 (m, 1H, 9-H), 2.61 (m, 1H, 7-H_{eq}), 2.66 (dt, J = 16.0 Hz, J = 2.5 Hz, $J_{11\beta,16\beta} = 2.5$ Hz, 1H, 16-H β), 2.87 (dd, J = 16.0 Hz, J = 3.1 Hz, 1H, 16-H α), 3.64 (s, 3H, 24-H) ppm; ¹³C NMR (CDCl₃): $\delta = 14.0$ (q, C-20), 16.6 (q, C-21), 17.3 (t, C-2), 18.7 (q, C-18/C-19), 20.9 (q, C-19/C-18), 21.0 (t, C-6), 23.6 (t, C-11), 27.1 (t, C-7), 32.5 (d, C-12), 36.2 (t, C-3), 37.1 (t, C-1), 37.9 (s, C-10), 42.9 (t, C-16), 46.9 (s, C-4), 48.5 (d, C-9), 48.7 (d, C-5), 52.0 (q, C-24), 55.6 (q, C-8), 62.7 (s, C-15), 67.1 (s, C-13), 67.7 (s, C-17), 118.5 (s, C-23), 178.3 (s, C-22), 205.8 (s, C-14) ppm; MS (70 eV): m/z (%) = 435 (8) [(M+2)⁺], 433 (25) [M⁺], 346 (100), 217 (35), 165 (81), 55 (28), 41 (42); C₂₄H₃₂CINO₄ (434.0); calc.: C 66.42, H 7.43, N 3.23; found: C 66.50, H 7.42, N 3.31.

11: M.p.: 212°C; $R_f = 0.28$ (CH/AcOEt = 9:1), 0.42 (CH/AcOEt = 3:1); $[\alpha]_D^{20} = 8.4$ (c = 0.2, CHCl₃); IR (KBr): $\nu = 2942$ (s), 2236 (w), 1713 (vs), 1674 (vs), 1387 (m), 1263 (s), 1184 (m) cm⁻¹; UV (MeOH): λ_{max} (lg ε) = 233 (4.103) nm; ¹H NMR (CDCl₃): $\delta = 0.49$ (s, 3H, 19-H), 0.98 (m, 1H, 1-H_{ax}), 1.11 (s, 3H, 20-H), 1.13 (m, 1H, 11-H β), 1.30 (m, 1H, 6-H_{eq}), 1.3–1.5 (m, 2H, 2-H), 1.36 (m, 1H, 1-H_{eq}), 1.48 (m, 1H, 3-H_{eq}), 1.53 (m, 1H, 6-H_{ax}), 1.62 (m, 1H, 11-H α), 1.71 (m, 1H, 3-H_{ax}), 1.78 (m, 1H, 5-H), 1.82 (m, 1H, 7-H_{ax}), 1.90 (m, 1H, 9-H), 1.92 (dt, J = 14.9 Hz, J = 3.2 Hz, $J_{11\beta,16\beta} = 3.2$ Hz, 1H, 16-H β), 2.30 (dt, J = 13.4 Hz, $2 \times J = 2.9$ –3.5 Hz, 1H, 7-H_{eq}), 2.30 (s, 3H, 18-H), 2.50 (dd, J = 14.9 Hz, J = 2.2 Hz, 1H, 16-H α), 3.40 (m, 1H, 12-H), 3.64 (s, 3H, 23-H), 6.68 (s_{br}, 1H, 14-H) ppm; ¹³C NMR (CDCl₃): $\delta = 16.1$ (q, C-19), 16.7 (q, C-20), 17.0 (t, C-2), 21.3 (t, C-6), 24.9 (q, C-18), 26.4 (t, C-11), 27.2 (d, C-12), 31.9 (t, C-7), 36.3 (t, C-3), 37.7 (t, C-1), 37.9 (s, C-10), 46.4 (t, C-16), 46.9 (s, C-4), 47.6 (s, C-8), 48.5 (d, C-5), 50.1 (d, C-9), 52.0 (q, C-23), 64.3 (s, C-15), 119.4 (s, C-22), 142.4 (d, C-14), 144.0 (s, C-13), 178.5 (s, C-21), 194.3 (s, C-17) ppm; MS (70 eV): m/z (%) = 405 (15) [(M+2)⁺], 403 (44) [M⁺], 388 (6), 344 (7), 316 (37), 256 (31), 181 (24), 123 (40), 43 (100); C₂₃H₃₀CINO₃ (403.9); calc.: C 68.39, H 7.49, N 3.47; found: C 68.44, H 7.43, N 3.51.

Methyl-(4α , 8α , 12α , 16α)-16,17-epoxy-17,17-dimethyl-14,15-dioxo-19noratisan-4-carboxylate (**12**)

The same procedure as described for **10** and **11** has been used. Typical quantities: 1.9 g (5.3 mmol) **2** in 40 ml abs. *THF*, 70 ml *tert*-butylchromate solution; CC: silica, CH/AcOEt (3:1).

Yield: 1.7 g **12** (83%); white crystals; m.p.: 142°C; $R_{\rm f} = 0.38$ (CH/AcOEt = 3:1); $[\alpha]_{\rm D}^{20} = +24.7$ (c = 0.5, CHCl₃); IR (KBr): $\nu = 2952$ (s), 1736 (vs), 1720 (vs), 1706 (vs), 1394 (m), 1235 (s), 1106 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 203 (3.861), 282 (2.520) nm; ¹H NMR (CDCl₃): $\delta = 0.67$ (s,

3H, 20-H), 0.95 (m, 1H, 1-H_{ax}), 1.08 (s, 3H, 21-H), 1.11 (m, 1H, 6-H_{eq}), 1.36 (qd, $3 \times J = 12.6-13.6$ Hz, J = 3.9 Hz, 1H, 6-H_{ax}), 1.45–1.65 (m, 2H, 2-H), 1.48 (s, 3H, 9-H), 1.49 (s, 3H, 18-H), 1.52 (m, 1H, 3-H_{eq}), 1.52 (ddd, J = 13.2 Hz, J = 4.9 Hz, J = 3.5 Hz, 1H, 1-H_{eq}), 1.65 (m, 1H, 3-H_{ax}), 1.66 (m, 1H, 5-H), 1.68 (td, $2 \times J = 13.9-14.1$ Hz, J = 5.1 Hz, 1H, 7-H_{ax}), 1.79 (dd, J = 11.5 Hz, J = 5.8 Hz, 1H, 9-H), 1.88 (dddd, J = 14.4 Hz, J = 5.8 Hz, J = 3.0 Hz, $J_{11\beta,16\beta} = 2.5$ Hz, 1H, 11-H β), 1.98 (ddd, J = 14.4 Hz, J = 3.0 Hz, 1H, 11-H α), 2.25 (ddd, J = 14.1 Hz, J = 3.0 Hz, 1H, 12-H), 2.50 (dd, J = 14.1 Hz, J = 3.8 Hz, J = 2.7 Hz, 1H, 7-H_{eq}), 2.34 (quint, J = 3.0 Hz, 1H, 12-H), 2.50 (dd, J = 19.4 Hz, J = 3.0 Hz, 1H, 16-H α), 2.55 (ddd, J = 19.4 Hz, J = 3.0 Hz, $J_{11\beta,16\beta} = 2.5$ Hz, 1H, 16-H β), 3.61 (s, 3H, 23-H) ppm; ¹³C NMR (CDCl₃): $\delta = 13.8$ (q, C-20), 16.5 (q, C-21), 17.4 (t, C-2), 18.7 (q, C-19), 20.5 (t, C-6), 20.6 (q, C-18), 22.2 (t, C-7), 24.1 (t, C-11), 31.5 (d, C-12), 36.5 (t, C-3), 37.2 (t, C-1), 38.5 (s, C-10), 40.3 (t, C-16), 47.0 (s, C-4), 48.8 (d, C-5), 49.1 (d, C-9), 52.0 (q, C-23), 67.4 (s, C-17), 68.4 (s, C-13), 69.0 (s, C-8), 178.5 (s, C-22), 204.9 (s, C-14), 205.9 (s, C-15) ppm; MS (70 eV): m/z (%) = 388 (37) [M⁺], 360 (42), 329 (56), 300 (48), 121 (100), 41 (81); C₂₃H₃₂O₅ (388.5); calc.: C 71.11, H 8.30; found: C 71.15, H 8.26.

Methyl-(4α , 8α , 12α , 16α)-16,17-epoxy-17,17-dimethyl-14,15-dioxo-14 α -homo-14a-oxa-19-noratisan-4-carboxylate (**13**)

A mixture of 240 mg (0.62 mmol) **12**, 600 mg *mCPBA* (93%, dried over P_2O_5) in 7 ml abs. 1,2dichloroethane, and 140 mg freshly distilled CF₃COOH dissolved in 2 ml abs. 1,2-dichloroethane under Ar was stirred for 22 h at RT and in the absence of light. Then additional 400 mg *mCPBA* in 2 ml 1,2-dichloroethane were added and the mixture was stirred for further 4 days. 100 ml Et₂O were added, and this mixture was washed twice with 1% Kl, three times with 10% Na₂S₂O₃, twice with 5% NaOH, and once with brine, and dried over Na₂SO₄. Evaporation and recrystallization from CH/ AcOEt (1:1) yielded 235 mg (94%) **13** as white crystals.

M.p.: 171°C; $R_{\rm f} = 0.27$ (CH₂Cl₂/MeOH = 60:1); $[\alpha]_{\rm D}^{20} = +5.7$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 2940$ (s), 1729 (vs), 1464 (m), 1241 (s), 1186 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 204 (3.804), 321 (2.104) nm; ¹H NMR (CDCl₃): $\delta = 0.65$ (s, 3H, 20-H), 1.04 (m, 1H, 1-H_{ax}), 1.09 (s, 3H, 21-H), 1.12–1.25 (m, 2H, 6-H), 1.40 (s, 3H, 19-H), 1.47 (s, 3H, 18-H), 1.5–1.6 (m, 2H, 2-H), 1.55 (m, 1H, 3-H_{eq}), 1.57 (m, 1H, 7-H_{ax}), 1.65 (m, 1H, 1-H_{eq}), 1.68 (m, 1H, 3-H_{ax}), 1.88 (dd, J = 11.4 Hz, J = 3.2 Hz, 1H, 5-H), 2.04 (m, 2H, 11-H), 2.13 (s_{br}, 1H, 12-H), 2.37 (t, J = 2.37 Hz, 1H, 9-H), 2.80 (dt, J = 13.5 Hz, $2 \times J = 3.3$ Hz, 1H, 7-H_{eq}), 2.90 (dd, J = 19.0 Hz, J = 5.2 Hz, 1H, 16-H α), 3.01 (d_{br}, J = 19.0 Hz, 1H, 16-H β), 3.63 (s, 3H, 23-H) ppm; ¹³C NMR (CDCl₃): $\delta = 14.0$ (q, C-20), 16.8 (q, C-21), 17.2 (t, C-2), 18.8 (q, C-19), 20.7 (q, C-18), 21.4 (t, C-6), 23.8 (t, C-11), 30.1 (d, C-12), 32.0 (t, C-7), 36.4 (t, C-3), 37.3 (t, C-1), 38.68 (t, C-16), 38.70 (s, C-4), 46.9 (s, C-10), 48.4 (d, C-5), 51.2 (d, C-9), 52.0 (q, C-23), 68.3 (s, C-13), 69.5 (s, C-17), 85.0 (s, C-8), 169.8 (s, C-15), 178.3 (s, C-22), 199.9 (s, C-14) ppm; MS (70 eV): m/z (%) = 404 (16) [M⁺], 376 (69), 360 (48), 251 (55), 223 (88), 121 (100), 41 (95); C₂₃H₃₂O₆ (404.5); calc.: C 68.29, H 7.97; found: C 68.11, H 7.92.

Methyl- $(4\alpha, 13R, 15\alpha)$ *-15-chloro-15-cyano-13-hydroxy-13-*(1*-methylvinyl)-14-oxo-17,19-dinoratisan-4-carboxylate* (**14**)

A solution of 860 mg (1.98 mmol) **10** in 20 ml 90% formic acid and 2 ml 85% H_3PO_4 was heated to 100°C for 15 h. After cooling, 100 ml ice water were added and the mixture was extracted three times with Et_2O . The combined organic phases were washed with 5% NaOH until the aqueous phase remained basic. After washing with brine, the etheral solution was dried over Na_2SO_4 and the solvent was evaporated; CC: silica (CH/AcOEt = 3:1).

Yield: 660 mg **14** (77%); pale yellow crystals; m.p.: 84°C, $R_{\rm f} = 0.29$ (CH/AcOEt = 3:1); [α]_D²⁰ = -108.6 (*c* = 0.1, CHCl₃); IR (KBr): ν = 3454 (s), 2928 (s), 1728 (vs), 1450 (m), 1255 (s), 1031 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε) = 204 (3.419), 291 (1.972) nm; ¹H NMR (CDCl₃): δ = 0.57 (s, 3H, 20-H), 1.02 (m, 1H, 1-H_{ax}), 1.08 (s, 3H, 21-H), 1.20 (m, 2H, 6-H), 1.35–1.55 (m, 2H, 2-H), 1.42 (m, 1H, 7-H_{ax}), 1.49 (m, 1H, 3-H_{eq}), 1.52 (m, 1H, 1-H_{eq}), 1.52 (m, 1H, 11-H β), 1.70 (m, 1H, 3-H_{ax}), 1.71 (m, 1H, 5-H), 1.76 (m, 1H, 11-H α), 1.82 (s, 3H, 19-H), 2.03 (m, 1H, 9-H), 2.47 (s_{br}, 1H, 12-H), 2.63 (dd, *J* = 15.5 Hz, *J* = 2.4 Hz, 1H, 16-H α), 3.03 (dt, *J* = 15.5 Hz, *J* = 3.0 Hz, *J*_{11 β ,16 β = 3.0 Hz, 1H, 16-H β), 3.60 (s, 3H, 24-H), 5.15 (m, 2H, 18-H) ppm; ¹³C NMR (CDCl₃): δ = 15.5 (q, C-20), 16.8 (q, C-21), 17.3 (t, C-2), 18.9 (q, C-19), 21.1 (t, C-6), 22.3 (t, C-11), 27.0 (t, C-7), 33.7 (d, C-12), 36.2 (t, C-3), 37.4 (s, C-10), 37.7 (t, C-1), 39.4 (t, C-16), 46.7 (s, C-4), 47.9 (d, C-5), 49.1 (d, C-9), 52.0 (q, C-24), 54.0 (s, C-8), 64.1 (s, C-15), 76.6 (s, C-13), 118.2 (t, C-18), 119.0 (s, C-23), 141.4 (s, C-17), 178.4 (s, C-22), 209.3 (s, C-14) ppm; MS (FD): *m*/*z* = 433 (100) [M⁺], 405 (11), 369 (12); MS (70 eV): *m*/*z* = 433 (0.5) [M⁺], 405 (3), 369 (100), 121 (53), 69 (59), 41 (55); C₂₄H₃₂ClNO₄ (434.0); calc.: C 66.42, H 7.43, N 3.23; found: C 66.41, H 7.43, N 3.25.}

Methyl- $(4\alpha, 13R, 15\alpha)$ *-*13*-acetyl-*15*-chloro-*15*-cyano-*13*-hydroxy-*14*-oxo-*17, 19*-dinoratisan-*4*-carboxylate* (**15**)

A solution of 310 mg (0.71 mmol) 14 in 70 ml abs. MeOH was treated with ozone at -70° C until it turned blue. The excess of ozone was removed by oxygen at this temperature, and $7 \text{ ml} (\text{CH}_3)_2 \text{S}$ were added. This mixture was allowed to reach RT. Evaporation of the solvent and recrystallization from CH/acetone (7:1) gave 130 mg (42%) 15 as white crystals. M.p.: 169–170°C; $R_{\rm f} = 0.22$ (CH/ AcOEt = 3:1), $\left[\alpha\right]_{D}^{20} = -153.7 \ (c = 0.1, \text{ CHCl}_3); \text{ IR (KBr): } \nu = 3492 \ (s), 2955 \ (s), 1726 \ (vs), 1435 \ (s), 1435$ (m), 1247 (s), 1181 (m) cm⁻¹; UV (MeOH): λ_{max} (lg ε) = 203 (3.279), 331 (1.867) nm; ¹H NMR $(CDCl_3): \delta = 0.50$ (s, 3H, 19-H), 0.99 (td, $2 \times J = 12.8$ Hz, J = 3.7 Hz, 1H, 1-H_{ax}), 1.10 (s, 3H, 20-H), $1.22 \text{ (m, 1H, 6-H_{eq})}, 1.35-1.55 \text{ (m, 2H, 2-H)}, 1.40 \text{ (qd, } 3 \times J = 12.5 \text{ Hz}, J = 3.5 \text{ Hz}, 1\text{H}, 6\text{-H}_{ax}), 1.44$ $(m, 1H, 7-H_{ax}), 1.54 (m, 1H, 3-H_{eq}), 155 (m, 1H, 1-H_{eq}), 1.68 (td, 2 \times J = 13.0 \text{ Hz}, J = 4.0 \text{ Hz}, 1H, 3-10 \text{ Hz}, J = 4.0 \text{ Hz}, 1H, 3-10 \text{ Hz}, J = 4.0 \text$ H_{ax}), 1.72 (m, 1H, 5-H), 1.8–2.0 (m, 2H, 11-H), 2.07 (dd, J = 11.7 Hz, J = 7.1 Hz, 1H, 9-H), 2.37 (s, 3H, 18-H), 2.58 (m, 1H, 7-H_{ca}), 2.60 (s_{br}, 1H, 12-H), 2.70 (dd, J = 15.7 Hz, J = 2.3 Hz, 1H, 16-H α), 3.00 (dt, J = 15.7 Hz, J = 2.8 Hz, $J_{11\beta,16\beta} = 2.8$ Hz, 1H, 16-H β), 3.18 (s_{br}, 1H, 13-OH), 3.64 (s, 3H, 23-H) ppm; 13 C NMR (CDCl₃): δ = 14.5 (q, C-19), 16.8 (q, C-20), 17.3 (t, C-2), 21.0 (t, C-6), 22.0 C-11), 24.9 (q, C-18), 27.2 (t, C-7), 32.9 (d, C-12), 36.3 (t, C-3), 37.6 (t, C-1), 37.8 (s, C-10), 40.6 (t, C-16), 46.8 (s, C-4), 48.1 (d, C-5), 49.4 (d, C-9), 52.1 (q, C-23), 54.6 (s, C-8), 63.7 (s, C-15), 80.2 (s, C-13), 118.4 (s, C-22), 178.4 (s, C-21), 201.3 (s, C-17), 209.4 (s, C-14) ppm; MS (70 eV): m/z $(\%) = 437 (10) [(M+2)]^+]$, 435 (26) $[M^+]$, 393 (82), 306 (63), 43 (100); $C_{23}H_{30}CINO_5$ (436.0); calc.: C 63.37, H 6.94, N 3.21; found: C 63.12, H 6.94, N 3.15.

Dimethyl- $(3R-(1-3''R^*,4''aS^*,4''bR^*,8''R^*,8''aR^*)-3\alpha,4a\beta,4b\alpha,8\beta,8a\beta))-4b,4''b,8,8''-tetramethyl-3,3''-di-(2-methyl-1-oxopropyl)-perhydro-dispiro[phenanthreno-1(2H),3'-(1,2,4,5]tetroxan-6',1''(2''H)-phenanthren)-8,8''-dicarboxylate ($ **16**)

Bis-(trimethylsilyl)-peroxide was prepared according to the literature [26, 34]. 16 mg (0.07 mmol) trimethylsilytrifluoromethan sulfonate were dissolved in 3 ml abs. CH₂Cl₂ under extreme dry conditions and cooled to -50° C. At this temperature, 500 mg *bis*-(trimethylsilyl)-peroxide and a cold (-50° C) solution of 200 mg **8** in 1 ml abs. CH₂Cl₂ were added. This mixture was kept for two days at -22° C, and after the first day another portion of 200 mg peroxide and 16 mg trimethylsilyltrifluoromethan sulfonate was added. After pouring onto 20 ml ice cold saturated NaHCO₃ solution, extraction with three portions of Et₂O, washing with H₂O, drying of the combined organic phases, evaporation and recrystallization from CH/AcOEt (2:1), 190 mg **16** (91%) were obtained.

M.p.: 223–225°C; R_f = 0.43 (CH/AcOEt) = 3:1), 0.62 (CH/AcOEt = 2:1); IR (KBr): ν = 2938 (m), 1727 (vs), 1712 (vs), 1453 (m), 1250 (s), 1145 (m) cm⁻¹; UV (MeOH): λ_{max} (lg ε) = 203 (3.896), 264 (2.724) nm; ¹H NMR (C₆D₆): δ = 0.53 (s, 3H, 19-H), 0.66 (m, 1H, 1-H_{ax}), 1.07 (d,

 $J = 6.9 \text{ Hz}, 3\text{H}, 17\text{-H}/18\text{-H}, 1.08 \text{ (d, } J = 6.9 \text{ Hz}, 3\text{H}, 18\text{-H}/17\text{-H}), 1.1\text{-}1.3 \text{ (m, 2H, 6-H)}, 1.14 \text{ (s, 3H, 20-H)}, 1.15\text{-}1.3 \text{ (m, 2H, 2-H)}, 1.21 \text{ (m, 1H, 11-Hax}), 1.32 \text{ (m, 1H, 1-Heq}), 1.33 \text{ (m, 1H, 9-H)}, 1.47 \text{ (d}_{\text{br}}, J = 12.7 \text{ Hz}, 1\text{H}, 3\text{-}\text{Heq}), 1.58 \text{ (m, 1H, 8-H)}, 1.64 \text{ (m, 1H, 7-Hax}), 1.64 \text{ (m, 1H, 13-Hax}), 1.69 \text{ (m, 1H, 3-Hax}), 1.69 \text{ (m, 1H, 11-Heq}), 1.78 \text{ (dd, } J = 11.7 \text{ Hz}, J = 2.9 \text{ Hz}, 1\text{H}, 5\text{-H}), 2.13 \text{ (m, 1H, 7-Heq}), 2.57 \text{ (sept, } J = 6.9 \text{ Hz}, 1\text{H}, 17\text{-H}), 2.96 \text{ (tt, } <math>2 \times J = 12.2\text{-}12.5 \text{ Hz}, 2 \times J = 3.0 \text{ Hz}, 1\text{H}, 12\text{-H}), 3.34 \text{ (s, 3H, 22-H)}, 3.61 \text{ (d}_{\text{br}}, J = 13.5 \text{ Hz}, 1\text{H}, 13\text{-}\text{Heq}) \text{ ppm; }^{13}\text{C} \text{ NMR } (\text{C}_6\text{D}_6): \delta = 13.8 \text{ (q, C-19)}, 17.0 \text{ (q, C-20)}, 18.2 \text{ (t, C-2)}, 18.3 \text{ (q, C-17/C-18)}, 18.4 \text{ (q, C-18/C-17)}, 23.8 \text{ (t, C-6)}, 25.0 \text{ (t, C-7)}, 27.3 \text{ (t, C-11)}, 33.2 \text{ (t, C-13)}, 36.8 \text{ (s, C-10)}, 37.1 \text{ (t, C-3)}, 38.1 \text{ (t, C-1)}, 40.1 \text{ (d, C-16)}, 43.3 \text{ (s, C-21)}, 214.1 \text{ (s, C-15) ppm; MS (FD): } m/z \text{ (\%)} = 795 \text{ (5) } [(\text{M}+\text{K})^+], 779 \text{ (30) } [(\text{M}+\text{Na})^+], 394 \text{ (25)}, 378 \text{ (8)}, 362 \text{ (100)}; \text{MS (70 eV)}; m/z \text{ (\%)} = 712 \text{ (0.3)}, 668 \text{ (1)}, 394 \text{ (1)}, 362 \text{ (31)}, 319 \text{ (30)}, 291 \text{ (22)}, 181 \text{ (38)}, 123 \text{ (58)}, 71 \text{ (71)}, 43 \text{ (100)}; \text{C}_{44}\text{H}_{68}\text{O}_{10} \text{ (757.0)}; \text{calc.: C 69.81, H 9.05, O 21.13; found: C 69.68, H 9.14, O 21.09.}$

$(4R-(4\alpha,4a\alpha,6a\alpha,9\alpha,10\alpha,11a\alpha,11b\beta))-4$ -Methoxycarbonyl-10-(methoxycarbonyl-methyl)-4,11bdimethyl-9-(1-methylethyl)-perhydro-6a,9-epoxy-2H-naphtho[2,1-c][1,2]dioxepin (17)

The same procedure has been used as described for **16**. Typical quantities: 200 mg (0.49 mmol) **7** in 1 ml abs. CH₂Cl₂, 220 mg *bis*-(trimethylsilyl)-peroxide, 16 mg (0.07 mmol) trimethylsilyltrifluor-omethan sulfonate in 3 ml abs. CH₂Cl₂; reaction time: 7 days (-22° C); CC: silica, CH/AcOEt = 4:1.

Yield: 160 mg 17 (77%); colourless oil; $R_f = 0.45$ (CH/AcOEt = 4:1), 0.60 (CH/AcOEt = 2:1); $[\alpha]_D^{20} = -4.4$ (c = 0.1, CHCl₃); IR (neat): $\nu = 2948$ (s), 1729 (vs), 1435 (m), 1244 (s), 1164 (m) cm⁻¹; UV (MeOH): λ_{max} (lg ε) = 203 (3.059) nm; ¹H NMR (CDCl₃): δ = 0.91 (d, J = 6.9 Hz, 3H, 17-20-H), 1.21 (m, 1H, 6-H_{eq}), 1.37 (m, 1H, 11-Ha), 1.45 (m, 1H, 6-H_{ax}), 1.45–1.6 (m, 2H, 2-H), 1.57 $(m, 1H, 1-H_{ea}), 1.57 (m, 1H, 3-H_{ea}), 1.62 (m, 1H, 9-H), 1.68 (m, 1H, 3-H_{ax}), 1.80 (dd, J = 12.2 Hz, 1.57 Hz)$ $J = 1.9 \text{ Hz}, 1\text{H}, 5\text{-H}, 1.85 \text{ (ddd, } J = 13.9 \text{ Hz}, J = 4.2 \text{ Hz}, J = 2.4 \text{ Hz}, 1\text{H}, 7\text{-H}_{eq}, 1.92 \text{ (td,} 1.92 \text{ (td,} 1.92 \text{ Hz}, 1.92 \text{ Hz}))$ $2 \times J = 13.8 - 13.9 \text{ Hz}, J = 5.4 \text{ Hz}, 1\text{ H}, 7 - \text{H}_{ax}$, 2.06 (sept, J = 6.9 Hz, 1 H, 16 - H), 2.61 (td, $2 \times J = 12.9 - 13.0 \text{ Hz}, J = 5.7 \text{ Hz}, 1\text{H}, 11 - \text{H}\beta$, 2.38 (dd, J = 15.4 Hz, J = 9.9 Hz, 1H, 13 - H), 2.44 (dd, J=15.4 Hz, J=4.2 Hz, 1H, 13-H), 2.58 (m, 1H, 12-H), 3.63 (s, 3H, 23-H), 3.66 (s, 3H, 22-H) ppm; 13 C NMR (CDCl₃): $\delta = 14.4$ (q, C-19), 14.9 (q, C-17/C-18), 16.8 (q, C-20), 16.9 (q, C-18/C-17), 17.3 (t, C-2), 21.6 (t, C-11), 22.0 (t, C-6), 29.6 (d, C-16), 32.1 (t, C-7), 34.8 (t, C-13), 35.1 (d, C-14), 21.0 (t, C-1 12), 36.3 (s, C-10), 36.9 (t, C-3), 37.8 (t, C-1), 47.2 (s, C-4), 49.08 (d, C-5), 49.14 (d, C-9), 51.6 (d, C-22), 51.9 (q, C-23), 109.4 (s, C-8), 111.0 (s, C-15), 172.9 (s, C-14), 178.9 (s, C-21), ppm; MS (FD): m/z (%) = 424 (100) [M⁺], 337 (11); MS (70 eV): m/z (%) = 392 (3), 377 (13), 337 (45), 121 (77), 71 (40), 43 (100); C₂₃H₃₆O₇ (424.5); calc.: C 65.07, H 8.55, O 26.38; found: C 65.24, H 8.56, O 26.33.

Methyl-(3S-(3\alpha, 4a\beta, 4b\alpha, 8\beta, 8a\beta))-3-(<i>methoxycarbonyl-methyl)-1,1,4b,8-tetramethyl-2-oxo-1,2,3,4,4a,4b,5,6,7,8,8a,9-dodecahydro-8-phenanthrencarboxylate (**18**)

The same oxidation procedure as described for **16** has been used. Typical quantities: 300 mg (0.73 mmol) **7** in 1.5 ml abs. CH₂Cl₂, 400 mg *bis*-(trimethysilyl)-peroxide, 50 mg (0.21 mmol) trimethylsilytrifluoromethan sulfonate in 8 ml abs. CH₂Cl₂. Reaction conditions: warming up from -40° C to 0° C within 7 h, stirring at 5°C for 2 h, no further addition of peroxide and trimethylsilytrifluoromethan sulfonate; CC: silica, CH/AcOEt = 9:1.

Yield: 175 mg **18** (61%); white crystals; m.p.: 108–110°C; $R_{\rm f} = 0.31$ (CH/AcOEt = 5:1), 0.19 (CH/AcOEt = 9:1); $[\alpha]_{\rm D}^{20} = -75.9$ (c = 0.1, CHCl₃); IR (KBr): $\nu = 2950$ (s), 1741 (vs), 1727 (vs), 1713 (vs), 1434 (m), 1241 (s), 1150 (m) cm⁻¹; UV (MeOH): $\lambda_{\rm max}$ (lg ε): 204 (3.761), 270 (2.275) nm; ¹H NMR (C₆D₆): $\delta = 0.58$ (s, 3H, 17-H), 0.92 (m, 1H, 1-H_{ax}), 0.98 (q, J = 13.2 Hz, 1H, 11-H_{ax}),

1.13 (s, 3H, 14-Me α), 1.2–1.4 (m, 2H, 2-H), 1.25 (s, 3H, 18-H), 1.27 (s, 3H, 14-Me β), 1.53 (m, 1H, 1-H_{eq}), 1.56 (m, 1H, 3-H_{eq}), 1.65 (dt, J = 12.6 Hz, $2 \times J = 4.5$ Hz, 1H, 11-H_{eq}), 1.74 (m, 1H, 6-H_{eq}), 1.83 (m, 1H, 3-H_{ax}), 1.88 (m, 1H, 6-H_{ax}), 1.99 (dd, J = 16.7 Hz, J = 5.7 Hz, 1H, 15-H), 2.06 (dd, J = 12.2 Hz, J = 4.6 Hz, 1H, 5-H), 2.22 (m, 1H, 9-H), 2.81 (dd, J = 16.7 Hz, J = 7.6 Hz, 1H, 15-H), 3.08 (m, 1H, 12-H), 3.32 (s, 3H, 20-H), 3.38 (s, 3H, 21-H), 5.46 (m, 1H, 7-H) ppm; ¹³C NMR (C₆D₆): $\delta = 14.9$ (q, C-17), 17.5 (q, C-18), 18.3 (t, C-2), 22.8 (q, 14-Me β), 25.7 (t, C-6), 30.4 (q, 14-Me α), 30.9 (t, C-11), 34.9 (t, C-15), 35.3 (s, C-10), 37.3 (t, C-3), 38.9 (t, C-1), 42.3 (d, C-12), 44.7 (d, C-5), 46.5 (s, C-4), 50.1 (d, C-9), 50.4 (s, C-14), 51.1 (q, C-21), 51.5 (q, C-20), 119.8 (d, C-7), 144.3 (s, C-8), 172.5 (s, C-16), 178.1 (s, C-19), 211.8 (s, C-13) ppm; MS (70 eV): m/z (%) = 390 (98) [M⁺], 330 (47), 204 (38), 181 (80), 121 (100), 55 (39), 41 (44); C₂₃H₃₄O₅ (390.5); calc.: 70.74, H 8.78, O 20.48; found: C 70.58, H 8.70, O 20.42.

Acknowledgements

This work was supported by *Krems Chemie AG*, Krems a.d. Donau, Austria. We are grateful to Dr. *E. Prantz* and Dr. *W. Streicher* (Krems Chemie) for stimulating discussion, to Dr. *G. Schmidtberg* (University of Ulm) for recording the mass spectra, and to Mrs. *M. Lang* (University of Ulm) for the elementary analyses.

References

- [1] Haslinger E, Hofner D (1998) Monatsh Chem 129: 297
- [2] Cohen Z, Keinan E, Mazur Y, Varkony TH (1975) J Org Chem 40: 2141
- [3] Cohen Z, Keinan E, Mazur Y, Varkony TH (1980) Org Synth 59: 176
- [4] Sosnowsky JJ, Danaher EB, Murrary RK (1985) J Org Chem 50: 2759
- [5] Varkony H, Pass S, Mazur Y (1974) J Chem Soc Chem Commun 437
- [6] Tal D, Keinan E, Mazur J (1979) J Am Chem Soc 101: 502
- [7] Cambie RC, Rutledge PS, Ryan GR, Strange GA, Woodgate PD (1990) Aust J Chem 43: 867
- [8] Bowden K, Heilbronn MI, Jones ERH, Weedon BCL (1946) J Chem Soc 39
- [9] Stevens RV, Beaulieu N, Chan WH, Daniewsky AR, Takeda T, Waldner A, Willard PG, Zutter U (1986) J Am Chem Soc 108: 1039
- [10] Shamma M, Rodriguez HR (1986) Tetrahedron 24: 6583
- [11] Colombo L, Gennari C, Resnati G, Scolastico C (1981) Synthesis 74
- [12] Hatam NAR, Whiting DA (1982) J Chem Soc Perkin Trans 1, 461
- [13] Corey EJ, Schmidt G (1979) Tetrahedron Lett 399
- [14] Heathcock CH, Young SD, Hagen JP Pilli R, Badertscher U (1985) J Org Chem 50: 2095
- [15] Sam DJ, Simmons HE (1972) J Am Chem Soc 94: 4024
- [16] Ferreira JTB, Cruz WO, Vieira PC, Yonashiro M (1987) J Org Chem 52: 3698
- [17] Oppenauer RV, Oberrauch H (1950) Chem Abstr 44: 3871c
- [18] Boyle PH, Cocker W, Grayson DH, Shannon PVR (1971) J Chem Soc C 1073
- [19] Viswanata V, Krishna Rao GS (1973) Tetrahedron Lett 4339
- [20] Roberts DL, Heckmann RA, Hege BP, Bellin SA (1968) J Org Chem 33: 3566
- [21] Yakamada K, Nishitani K, Yamamoto A (1976) Chem Lett 177
- [22] Hamley P, Holmes AB, Mashall, MacKinnon JWM (1991) J Chem Soc Perkin Trans 1, 1793
- [23] Koch CSS, Chamberlin AR (1989) Synth Commun 19: 829
- [24] Suzuki M, Takada H, Noyori R (1982) J Org Chem 47: 902
- [25] Oswald AA, Guertin DL (1963) J Org Chem 28: 651
- [26] Cookson PG, Davies AG, Fazal N (1975) J Organomet Chem 99: C31
- [27] Kharash MS, Sosnovsky G (1958) J Org Chem 23: 1322
- [28] Sanderson JR, Paul K, Story PR, Denson DD, Alford JA (1975) Synthesis 159

- [29] Rücker G, Mayer R, Manns D (1986) Planta Med 52: 245
- [30] Rücker G, Walter RD, Manns D, Mayer R (1991) Planta Med 52: 295
- [31] Zaman SS, Sharma RP (1991) Heterocycles 32: 1593
- [32] Vennerstrom JL, Fu H-N, Ellis A, Ager L, Wood JK, Andersen SL, Garena L, Milhouse WK (1992) J Med Chem 35: 3023
- [33] Kalinowsky H-O, Berger S, Braun S (1984) ¹³C NMR-Spektroskopie. Thieme, Stuttgart New York, p 168
- [34] Hahn W, Metzinger L (1956) Makromol Chem 21: 113

Received October 23, 1997. Accepted November 21, 1997